WA 2917

12.8.92

PROJECT MEMORANDUM

DATE:

December 8, 1992

TO:

Joe Depner, Hydrogeologist

FROM:

Nels Cone, Chemist

SUBJECT:

DATA VALIDATION OF ANALYTICAL RESULTS FROM PIER 91 RCRA

FACILITY INVESTIGATION, PROJECT 624878, DATA SET #4

On September 22, 1992, soil samples were collected by Burlington Environmental Inc. (Burlington). These samples were submitted to Sound Analytical Services of Tacoma, Washington for semivolatile compound (EPA SW-846 Method 8270) and Total Petroleum Hydrocarbon (EPA SW-846 Methods 418.1 and 8015) analyses. I performed a review of the analytical results on the samples CP-HA-5-4.5-5 and CP-HA-5-6-6.5.

Properly completed chain-of-custody forms were included, along with documented signatures from field to laboratory receipt. The samples were shown as having been properly iced and received in good condition. Holding times were clearly written and evaluated according to regulatory protocol (*National Functional Guidelines for Organic Data Review*, USEPA, 1990). The samples received the requested analyses, and laboratory extraction/analysis times met the established guidelines.

Duplicate analyses were performed as required by the Quality Assurance Project Plan (QAPP). Relative percent differences between individual results indicate detection comparability, although not all met within required quality control (QC) guidelines. Method blank analyses displayed surrogate recoveries well within required QC limits.

Analytical results indicate elevated levels of hydrocarbon compounds requiring dilution in all samples tested. As a result, elevated detection limits were reported, and sample surrogate recoveries were outside normal QC limits, as were recoveries for matrix spike/matrix spike duplicate analyses. The samples were diluted to ensure that target analytes were within the instrument calibration range with the exception of total petroleum fuel hydrocarbons analyses (Method 8015); the contaminating hydrocarbons were not identified as matching the elution pattern for any single product, and the sample concentration clearly exceeded the calibration range. Also as a result of the required dilution, results from semivolatile analyses were found to be below the practical quantitation limits for all detected compounds. Regardless, the data quality objectives as defined in Table F-2 of the QAPP are met.

Supporting documentation for these analyses included instrument calibration/tuning data, and chromatographic/mass spectral data. Data consistency was demonstrated throughout. Proper data qualifier flags accompanied the analytical results as needed, and their use is consistent with USEPA guidelines. Accordingly, this data set can be considered valid for its intended use.

NC/rlk/b42:1939b.mem

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

17 November, 1992

To: Burlington Environmental Engineering

PROJECT NUMBER: 624878

PROJECT NAME: Pier 91

LABORATORY WORK ORDER NUMBER IDENTIFICATION: 27308

Samples were taken on 9/22/92, and received at Sound Analytical on 9/23/92. The samples were analyzed for semivolatile organics using EPA 8270, total petroleum hydrocarbons by EPA 418.1 modified, and total petroleum hydrocarbons utilizing EPA 8015 modified.

SEMIVOLATILE ORGANICS-

Samples 27308-1, and -2 were analyzed for semivolatile organics by EPA 8270. All samples underwent GPC cleanup. Samples were extracted and analyzed within holding times. Surrogate recoveries for -1 and -2 were outside quality control limits due to matrix interferences requiring dilution of the sample. No target analyte was detected in the method blank above PQL. The percent recoveries for all compounds were outside QC limits except for Pyrene. The spike added was diluted out during analysis. The relative percent difference values for Phenanthrene exceeded QC limits. Due to high concentrations of matrix interferents (TPH) requiring dilution, all target compound levels were below the PQL's.

TOTAL PETROLEUM HYDROCARBONS-

Samples -1 and -2 were extracted and analyzed for Total Petroleum Hydrocarbons using EPA method 418.1 modified for soils on 9/28/92. No detectable contamination was detected in the method blank. The percent recovery of the matrix spike and matrix spike duplicate analysis was outside QC limits due to sample dilution. The relative percent difference was within limits for duplicate analysis. All other quality control parameters were within limits.

TOTAL PETROLEUM FUEL HYDROCARBONS-

Samples -1 and -2 were analyzed for Total Petroleum Fuel Hydrocarbons using EPA method 8015 modified. Samples were extracted on 9/29/92, and analyzed on 10/7/92. The concentration of contaminant found in samples 1- and -2 exceeded the calibration range of the method, and should be considered estimated quantities. The product found encompassed the gasoline, diesel and heavier range organics,

and was flagged as not matching elution patterns for any single product. Relative percent difference for duplicate analysis exceeded quality control limits, and was re-run with similar results. The percent recoveries for matrix spike and matrix spike duplicates was outside quality control limits due to sample dilution prior to analysis. No contaminant was detected in the method blank, and all other quality control parameters were within limits.

Results were reported dry weight corrected.

No blank correction was used.

Data qualifier flags are included in the quality control package.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST. TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Burlington Environmental Date: October 12, 1992

Engineering

Report On: Analysis of Soil

Lab No.: 27308

Page 1 of 8

IDENTIFICATION:

Samples Received on 09-23-92

Project: 624878 Pier 91

ANALYSIS:

Lab No. 27308-1

Client ID: CP-HA5-4.5-5

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 9-25-92 Date Analyzed: 10-6-92

CAS No.	Compounds	Concentration ug/kg	PQL	Flags
108-95-2	Phenol	ND	35,000	
111-44-4	bis(2-Chloroethyl) ether	ND	35,000	
95-57-8	2-Chlorophenol	ND	35,000	
541-73-1	1,3-Dichlorobenzene	ND	35,000	
106-46-7	1,4-Dichlorobenzene	ND	35,000	
100-51-6	Benzyl Alcohol	ND	71,000	
95-50-1	1,2-Dichlorobenzene	ND	35,000	
95-48-7	2-Methylphenol	ND	35,000	
39638-32-9	bis(2-Chloroisopropyl)ether		35,000	
106-44-5	4-Methylphenol	. ND	35,000	
621-64-7	N-Nitroso-Di-N-propylamine	ND	35,000	
67-72-1	Hexachloroethane	ND	35,000	
98-95-3	Nitrobenzene	ND	35,000	
78-59-1	Isophorone	ND	35,000	
88-75-5	2-Nitrophenol	ND	35,000	
105-67-9	2,4-Dimethylphenol	ND	35,000	
65-85-0	Benzoic Acid	ND	180,000	
111-91-1	bis(2-Chloroethoxy)methane	ND	35,000	
120-83-2	2,4-Dichlorophenol	ND	35,000	
120-82-1	1,2,4-Trichlorobenzene	ND	35,000	
91-20-3	Naphthalene	8,400	35,000	J
106-47-8	4-Chloroaniline	ND	71,000	
87-68-3	Hexachlorobutadiene	ND	35,000	
59-50-7	4-Chloro-3-methylphenol	ND	71,000	

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 2 of 8 Lab No. 27308 October 12, 1992

Lab No. 27308-1

Client ID: CP-HA5-4.5-5

EPA Method 8270 Continued

DITA MECHOO	0270 Concinded			
CAS No.	Compounds	Concentration ug/kg	PQL	Flags
91-57-6 77-47-4	2-Methylnaphthalene	23,000	35,000	J
88-06-2	Hexachlorocyclopentadiene 2,4,6-Trichlorophenol	ND ND	35,000	
95-95-4	2,4,5-Trichlorophenol	ND	35,000 35,000	
91-58-7	2-Chloronaphthalene	ND	35,000	
88-74-4	2-Nitroaniline	ND	180,000	
131-11-3	Dimethyl phthalate	ND	35,000	
208-96-8	Acenaphthylene	ND	35,000	
606-20-2	2,6-Dinitrotoluene	ND	35,000	
99-09-2	3-Nitroaniline	ND	180,000	
83-32-9	Acenaphthene	ND	35,000	
51-28-5	2,4-Dinitrophenol	ND	180,000	
100-02-7	4-Nitrophenol	ND	180,000	
132-64-9	Dibenzofuran	ND	35,000	
121-14-2	2,4-Dinitrotoluene	ND	35,000	
84-66-2 7005-72-3	Diethylphthalate	ND	35,000	
86-73-7	4-Chlorophenyl phenyl ether Fluorene		35,000	_
100-01-6	4-Nitroaniline	4,500	35,000	J
534-52-1	4,6-Dinitro-2-methylphenol	ND ND	180,000	
86-30-6	N-Nitrosodiphenylamine	ND	35,000	
101-55-3	4-Bromophenyl phenyl ether	ND	35,000	
118-74-1	Hexachlorobenzene	ND	35,000	
87-86-5	Pentachlorophenol	ND	180,000	
85-01-8	Phenanthrene	3,500	35,000	J
120-12-7	Anthracene	ND	35,000	_
84-74-2	Di-n-butylphthalate	ND	35,000	
			40	

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878

Page 3 of 8 Lab No. 27308 October 12, 1992

Lab No. 27308-1

Client ID: CP-HA5-4.5-5

EPA Method 8270 Continued

CAS No.	Compounds	Concentration ug/kg	PQL	Flags
206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-81-7 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2	Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND 5,200 ND ND ND ND ND ND ND ND ND ND ND ND ND	35,000 35,000 35,000 35,000 35,000 35,000 35,000 35,000 35,000 35,000 35,000	J

ND - Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

Results are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits	
Compound	Recovery	Water	Soil	
Nitrobenzene - d ₅	X8	35 - 114	23 - 120	
2-Fluorobiphenyl p-Terphenyl-d ₁₄	X8 X8	43 - 116 33 - 141	30 - 115 18 - 137	
Phenol-d ₅	X8	10 - 94	24 - 113	
2-Fluorophenol 2,4,6-Tribromophenol	X8 X8	21 - 100 10 - 123	25 - 121 19 - 122	

Burlington Environmental, Engineering

Project: 624878 Page 4 of 8 Lab No. 27308 October 12, 1992

Lab No. 27308-1

Client ID: CP-HA5-4.5-5

TPH Per EPA Method 418.1 Date Extracted: 9-28-92 Date Analyzed: 9-28-92

Total Petroleum Hydrocarbons, mg/kg

35,000

- didn't get jorun because TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 9-29-92

Date Analyzed: 10-7-92

Total Petroleum

E, X2 Fuel Hydrocarbons, mg/kg 55,000

TPH as Aged Gasoline, Diesel, Heavy Oil

SURROGATE RECOVERY, %

1-chlorooctane X8 o-terphenyl X8

Burlington Environmental, Engineering

Project: 624878 Page 5 of 8

Lab No. 27308 October 12, 1992

Lab No. 27308-2

Client ID: CP-HA5-6-6.5

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 9-25-92 Date Analyzed: 10-6-92

CAS No.	Compounds	Concentration ug/kg	PQL	Flags
108-95-2 111-44-4	Phenol bis(2-Chloroethyl) ether	ND ND	8,000 8,000	
95-57-8	2-Chlorophenol	ND	8,000	
541-73-1	1,3-Dichlorobenzene	ND	8,000	
106-46-7 100-51-6	1,4-Dichlorobenzene Benzyl Alcohol	ND	8,000	
95-50-1	1,2-Dichlorobenzene	ND	16,000	
95-48-7	2-Methylphenol	ND ND	8,000	
39638-32-9			8,000	
106-44-5	4-Methylphenol	ND	8,000	
621-64-7	N-Nitroso-Di-N-propylamine	ND	8,000	
67-72-1	Hexachloroethane	ND	8,000	
98-95-3	Nitrobenzene	ND	8,000	
78-59-1	Isophorone	ND	8,000	
88-75-5	2-Nitrophenol	ND	8,000	
105-67-9	2,4-Dimethylphenol	ND	8,000	
65-85-0	Benzoic Acid	ND	40,000	
111-91-1	bis(2-Chloroethoxy)methane	ND	8,000	
120-83-2	2,4-Dichlorophenol	ND	8,000	
120-82-1	1,2,4-Trichlorobenzene	ND	8,000	
91-20-3	Naphthalene	2,300	8,000	J
106-47-8	4-Chloroaniline	ND	16,000	
87-68-3	Hexachlorobutadiene	ND	8,000	
59-50-7	4-Chloro-3-methylphenol	ND	16,000	

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878

Page 6 of 8 Lab No. 27308 October 12, 1992

Lab No. 27308-2

Client ID: CP-HA5-6-6.5

EPA Method 8270 Continued					
CAS No.	Compounds	Concentration ug/kg	PQL	Flags	
91-57-6 77-47-4 88-06-2 95-95-4 91-58-7 88-74-4 131-11-3 208-96-8 606-20-2	2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene	5,700 ND ND ND ND ND ND ND ND	8,000 8,000 8,000 8,000 40,000 8,000 8,000 8,000	J	
99-09-2 83-32-9 51-28-5 100-02-7 132-64-9 121-14-2 84-66-2	3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate	ND 940 ND ND ND ND ND	40,000 8,000 40,000 40,000 8,000 8,000	J	
7005-72-3 86-73-7 100-01-6 534-52-1 86-30-6 101-55-3 118-74-1 87-86-5	4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol	ND 1,300 ND ND ND ND ND ND	8,000 8,000 40,000 40,000 8,000 8,000 40,000	J	
85-01-8 120-12-7 84-74-2	Phenanthrene Anthracene Di-n-butylphthalate	2,300 ND ND	8,000 8,000 8,000	J	

ND - Not Detected

Continued

Burlington Environmental, Engineering

Project: 624878

Page 7 of 8 Lab No. 27308 October 12, 1992

Lab No. 27308-2

Client ID: CP-HA5-6-6.5

EPA Method 8270 Continued

CAS No.	Compounds	Concentration ug/kg	PQL	Flags
206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-81-7 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2	Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	880 880 880 880 880 880 880 880 880 880	8,000 8,000 16,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000	J

ND - Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

Results are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	. Limits	
Compound	Recovery	Water	Soil	
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	X8 X8 X8 X8 X8	35 - 114 43 - 116 33 - 141 10 - 94 21 - 100 10 - 123	23 - 120 30 - 115 18 - 137 24 - 113 25 - 121 19 - 122	

Burlington Environmental, Engineering

Project: 624878 Page 8 of 8 Lab No. 27308 October 12, 1992

Lab No. 27308-2

Client ID: CP-HA5-6-6.5

TPH Per EPA Method 418.1 Date Extracted: 9-28-92 Date Analyzed: 9-28-92

Total Petroleum
Hydrocarbons, mg/kg

15,000

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 9-29-92 Date Analyzed: 10-7-92

Total Petroleum
Fuel Hydrocarbons, mg/kg

20,000

E

TPH as Aged Gasoline, Diesel, Heavy Oil

SURROGATE RECOVERY, %

1-chlorooctane o-terphenyl

X8

X8

SOUND ANALYTICAL SERVICES

DENNIS L. BEAN

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST. TACOMA. WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-3047

QUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270

Page 1 of 3

Client: Burlington Environmental, Engineering

Lab No: 27308qc3 Units: ug/kg

Date: October 12, 1992

Blank No: S6287

METHOD BLANK

: Value	PQL	Flags
ND N	670 670 670 670 670 670 670 670 670 670	Flags
ND ND ND ND 3,	670 670 670	
	ND ND ND	ND 670 ND 670 ND 670 ND 3,300 ND 670

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270

Page 2 of 3

Client:

Burlington Environmental, Engineering

Lab No:

27308qc3

Units: ug/kg Date: Octobe

October 12, 1992

Blank No: S6287

METHOD BLANK				
Compound	Blank Value	PQL	Flags	
3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethylphthalate 4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butylphthalate Fluoranthene Pyrene Butyl benzyl phthalate 5,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-ethylhexyl)phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	2 2 3 3 3 4 4 5 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3,300 3,300 3,300 670 670 670 670 670 670 3,300 670 670 670 670 670 670 670 670 670 6	J	

QUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270

Page 3 of 3

Client:

Burlington Environmental, Engineering

Lab No: 27308qc3

Units:

ug/kg

Date:

October 12, 1992

Blank No: S6287

ND = Not Detected.

PQL = Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

SEMIVOLATILE SURROGATES

Surrogate	Percent Recovery	Control Water	Limits Soil	
Nitrobenzene - d5	86	35 - 114	23 - 120	
2-Fluorobiphenyl	85	43 - 116	30 - 115	
p-Terphenyl-d14	95	33 - 141	18 - 137	
Phenol-d6	73	10 - 94	24 - 113	
2-Fluorophenol	88	21 - 100	25 - 121	
2,4,6-TBP	93	10 - 123	19 - 122	

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-3047

QUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270 Page 1 of 3

Burlington Environmental, Engineering Client:

Lab No: 27308qc4

Matrix: Soil Units: ug/kg

October 12, 1992 Date :

Dup No: 27308-1

> DUPLICATE Sample

i	neering	4,5.5	
	Duplicate (D)	RPD	F
	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	000000000000000000000000000000000000000	

Compound	(\$)	(D)	RPD	FLAGS
Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-Di-N-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol	ND ND ND ND ND ND ND ND ND	ND N		
1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol	ND 8,400 ND ND ND	ND 11,000 ND ND ND	0.0 27.0 0.0 0.0	J
2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate	23,000 ND ND ND ND ND ND	28,000 ND ND ND ND ND ND	20.0 0.0 0.0 0.0 0.0	J

QUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270 Page 2 of 3

Client: Burlin

Burlington Environmental, Engineering

Lab No: 27308qc4

Matrix: Soil Units: ug/kg

Date: October 12, 1992

Dup No: 27308-1

CP-HA-5-4,5-5

Sample Duplicate Compound (S)		DUPLICATE '			
3-Nitroaniline ND ND 0.0 Acenaphthene ND ND 0.0 2,4-Dinitrophenol ND ND 0.0 4-Nitrophenol ND ND ND 0.0 Dibenzofuran ND ND ND 0.0 2,4-Dinitrotoluene ND ND 0.0 2,6-Dinitrotoluene ND ND 0.0	Compound			RPD	FLAGS
4-Chlorophenyl phenyl ether Fluorene	Acenaphthylene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethylphthalate 4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butylphthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-ethylhexyl)phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene		ND N	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	J

QUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270 Page 3 of 3

Client:

Burlington Environmental, Engineering

Lab No: 27308qc4

Matrix: Soil Units: ug/kg

Date:

October 12, 1992

Dup No:

27308-1

DUPLICATE

ND = Not Detected

RPD = Relative Percent Difference $= [(S - D) / ((S + D) / 2] \times 100$

SEMIVOLATILE SURROGATES

Surrogate	Sample	Duplicate		l Limits Soil	
Nitrobenzene - d5 2-Fluorobiphenyl p-Terphenyl-d14 Phenol-d6 2-Fluorophenol 2,4,6-TBP	X8 X8 X8 X8	X8 X8 X8 X8 X8	35 - 114 43 - 116 33 - 141 10 - 94 21 - 100 10 - 123	23 - 120 30 - 115 18 - 137 24 - 113 25 - 121 19 - 122	

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

SOIL MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

Client Name: Burlington Environmental, Engineering
Lab No: 27308qc5
October 12, 1992

SEMI-VOLATILE ORGANICS								
COMPOUND	SPIKE (ug/kg)	SAMPLE RESULT	CONC MS	% REC	CONC MSD	% REC	RPD	Flags
L,2,4-Trichlorobenzene	3,500	ND	ND	0.0	ND	0.0	0.0	X5
Acenaphthene	3,500	ND	6,400	181	6,100	173	4.5	X5
2,4 Dinitrotoluene	3,500	ND	ND	0.0	ND	0.0	0.0	X5
Pyrene	3,500	5,200	7,300	60	6,900	49	20	X5
W-nitrosodi-n- Propylamine	3,500	ND	ND	0.0	ND	0.0	0.0	X5
.,4-Dichlorobenzene	3,500	ND	ND	0.0	ND	0.0	0.0	X5
Pentachlorophenol	3,500	ND	ND	0.0	ND	0.0	0.0	X5
Phenol	3,500	ND	ND	0.0	ND	0.0	0.0	X5
2-Chlorophenol	3,500	ND	ND	0.0	ND	0.0	0.0	X5
t-Chloro-3-Methylphenol	3,500	ND	ND	0.0	ND	0.0	0.0	X5
!-Nitrophenol	3,500	ND	ND	0.0	ND	0.0	0.0	X5

RPD = Relative Percent Difference

REC = Percent Recovery

*QC Limits:	MAX RPD	% RECOVERY
1,2,4-Trichlorobenzene	23	38-107
Acenaphthene	19	31-137
2,4 Dinitrotoluene	47	28-89
yrene	36	35-142
N-nitrosodi-n-		
Propylamine	38	41-126
1,4-Dichlorobenzene	27	28-104
Pentachlorophenol	47	17-109
Phenol	35	26-90
2-Chlorophenol	50	25-102
-Chloro-3-Methylphenol	33	26-103
-Nitrophenol	50	11-114

These are advisory limits only.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST. TACOMA. WASHINGTON 98424 - TELEPHONE (206) 922-2510 - FAX (206) 922-5047

QUALITY CONTROL REPORT

Total Petroleum Fuel Hydrocarbons by Method 8015

Page 1 of 2

Client:

Burlington Environmental, Engineering

Lab No:

27308qc6

Matrix:

Soil

Units:

mg/kg

Date:

November 12, 1992

DUPLICATE

Dup. No. 27308-1		-			
Parameter	Sample(S)	Duplicate(D)	RPD	Flags	_outside
Total Petroleum Fuel Hydrocarbons	55,000	40,000	31	X4 /	Quints
SURROGATE RECOVERY% 1-chlorooctane o-terphenyl				X8 X8	

RPD = relative percent difference = $[(S - D) / ((S + D) / 2)] \times 100$ Surrogate debutes

MATRIX S	SPIKE	/	MATRIX	SPIKE	DUPLICATE	RECOVERY	0	,
----------	-------	---	--------	-------	-----------	----------	---	---

MSD No.				15/	Libite	out
Parameter	Sample Result (SR)	Spiked Sample Result (MS)	Spike Added (SA)	%R	Spike Dup Result (MSD)	RPD
Total Petroleum Fuel Hydrocarbons	55,000	29,000	405	X5	30,000	3.4
SURROGATE RECOVERY% 1-chlorooctane o-terphenyl						X8/ X8

[%]R = Percent Recovery

 $^{= [(}MS - SR) / SA] \times 100$

RPD = Relative Percent Difference

 $^{= [(}MS - MSD) / ((MS + MSD) / 2] \times 100$

QUALITY CONTROL REPORT

Total Petroleum Fuel Hydrocarbons by Method 8015

Page 2 of 2

Client:

Burlington Environmental, Engineering

Lab No:

27308qc6

Units:

mg/kg

Date:

November 12, 1992

METHOD BLANK

Blank No.	
Parameter	Blank Value
Total Petroleum Fuel Hydrocarbons	< 10
SURROGATE RECOVERY% 1-chlorooctane o-terphenyl	85 69

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

QUALITY CONTROL REPORT

TPH by Method 418.1

Client:

Burlington Environmental, Engineering

Lab No:

27308qc1

Matrix:

Soil mg/kg

Units: Date:

October 12, 1992

DUPLICATE

Dup No. 27308-1

Parameter	Sample(S)	Duplicate(D)	RPD
Total Petroleum Hydrocarbons	35,000	34,000	2.9

RPD = Relative Percent Difference
= [(S - D) / ((S + D) / 2] x 100

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

MSD No. 27308-1						
Parameter	Sample Result (SR)	Spiked Sample Result (MS)	Spike Added (SA)	%R	Spike Dup Result (MSD)	RPD
Total Petroleum Hydrocarbons	35,000	33,000	880	X5	38,000	14.1

%R = Percent Recovery

 $= [(MS - SR) / SA] \times 100$

RPD = Relative Percent Difference

 $= [(MS - MSD) / ((MS + MSD) / 2] \times 100$

METHOD BLANK

Parameter	Blank Value
Total Petroleum Hydrocarbons	< 10

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 972-2310 - FAX (206) 972-5047

DATA QUALIFIER FLAGS

- ND: Indicates that the analyte was analyzed for but was not detected. The associated numerical value is the practical quantitation limit, corrected for sample dilution.
- J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.
- C: The identification of this analyte was confirmed by GC/MS.
- B: This analyte was also detected in the associated method blank. There is a possibility of blank contamination.
- E: The concentration of this analyte exceeded the instrument calibration range.
- D: The reported result for this analyte is calculated based on a secondary dilution factor.
- A: This TIC is a suspected aldol-condensation product.
- M: Quantitation Limits are elevated due to matrix interferences.
- S: The calibration quality control criteria for this compound were not met. The reported concentration should be considered an estimated quantity.
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be
- X2: Contaminant does not appear to be "typical" product. Further testing is suggested for identification.
- X3: Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is recommended.
- X4: RPD for duplicates outside QC limits. Sample was re-analyzed with similar results. Sample matrix is nonhomogeneous.
- X4a: RPD for duplicates outside QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
- X5: Matrix spike was diluted out during analysis.
- X6: Recovery of matrix spike outside QC limits. Sample was re-analyzed with similar results.
- X7: Recovery of matrix spike outside QC limits. Matrix interference is indicated by blank spike recovery data.
- X8: Surrogate was diluted out during analysis.
- X9: Surrogate recovery outside QC limits due to matrix composition.
- X10: Surrogate recovery outside QC limits due to high contaminant levels.

RECEIVED

Set 4

ENV : 9 1992

BLATAGION ENGINEENIAL INC.

CHAIN OF CUSTODY

210 West Sand Bank Road P.O. Box 330 Columbia, It. 62236-0330 618/281-7173 618/281-5120 FAX

CHAIN-OF-CUSTODY RECORD

c.o.c. SERIAL NO. 6067

618/281-5120	FAX																			
PROJECT PROJECT SAMPLER	NO. OF CONTAINERS	A TANK	38/3	25	4/	//			//		PRESER-	REN	MARKS							
LAB DESTINATION SYAS							1		12	16	/ /	/ /	/ /	/ /	180	70/	(CHEMICAL AN	ALYSIS REQ	UEST	
SAMPLE NO.	DATE		OMO	88	SAMPLE LOCATION	0.00 0.00		XY	1/20	3/				/y	CHEMI	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FORM NUMBE	R IF APPLICA	ABLE)	
	4-22	130		4	CP-HAS-4.5.	-5 1	7	1	4					A						
	1-22	1140		A	CP-HA5- 6-6.		X	4	1					A						
																		-		
RELINQUIS	SHED BY								REC	EIVE	BY									
-		SIG	NATU	RE		DATE	TI	ME	_	A	/ /			SIG	NATURE			DATE	TIME	
							100	25		9-12 1 1:c									16:05A	
MA	1/02	11,	OF	1	<u>U-1</u>	/	- //	1		}		d								
17	co rigi	10-1	11	21_	-	Solang								13/20	113/1					
·							1													
011122111	NOTES					l			-											
SHIPPING	NOTES				LA	LAB NOTES														